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A Comparison of Four Experimental Designs for the Estimation
of Heritability

D. G. PEDERSON

Faculty of Agriculture, University of Sydney, Sydney, New South Wales (Australia)

Summary. The partial diallel cross, the complete diallel cross, and the designs known as North Carolina Experiments
1 and 2 are compared for their usefulness in estimating heritability. It is first shown that reliable values for the sam-
pling mean and variance of heritability estimates are obtained from approximate expressions based on the moments of
the chi-square distribution. These expressions are then applied to determine the optimum experimental designs for
a range of situations.

The main basis for discrimination is the amount of information per unit, defined as

i = 1/(N var (k%)
where k2 is the estimate of the heritability A% and N is the number of units in the experiment, either individuals or
families. )

The two parameters considered were the heritability of individuals and the heritability of full-sib families, and for
each of these the partial diallel cross was the most preferred, followed in decreasing order of preference by design NC2,
the complete diallel, and design NC1.

It is first shown that there is no optimum number of parents for a partial diallel cross or male parents for designs
NC1 and NC2. The number of crosses per parent for a partial diallel or dams per sire for designs NC1 and NC2 should
generally be six or less. Any expansion should be in the direction of using more parents in the case of the partial
diallel, or more male parents in the case of designs NC1 and NC2. For the two heritability parameters considered in

this study it is inefficient to increase the number of replicates beyond two.

1. Introduction

The efficiency of heritability estimates from a dial-
lel cross has been investigated by Pederson (1971) and
recommendations were made for both the number of
parents and the number of individuals per cross to be
used in the experimental design. Three other mating
designs are now considered, namely the partial diallel
cross and the designs commonly referred to as North
Carolina Experiment 1 (NC 1) and North Carolina
Experiment 2 (NC 2) (Comstock and Robinson 1952).

A general evaluation of these three designs and of
the half diallel cross has been presented by Kearsey
(1965), using data for flowering time in a population
of Papaver dubium. The usefulness of estimates
obtainable from each design was discussed, along
with the effects of failure of assumptions on which
the genetic model was based. The half diallel cross
was found to be the most useful design, followed by
the two North Carolina designs. Marquez-Sanchez
and Hallauer (1970 a, b) have studied the estimation
of genetic components of variance for ten characters
in corn using design NC 1. The variance of estimates
was shown to decrease with increasing sample size,
but only slowly as the number of females per male was
increased much beyond four.

Since heritabilities and other functions of the com-
ponents of variance are generally of greater interest
than the components themselves the present paper

deals with the efficient estimation of heritability, in
particular the heritability applicable to individual
selection and the heritability applicable to the selec-
tion of full-sibs based on family means. In the simu-
lation method used previously (Pederson loc. cit.) the
distribution of a heritability estimate was built up
by the generation of random values from various
chi-square distributions. To apply the same tech-
nique to the present three designs would have re-
quired a considerable amount of computer time, and
an approximate but quicker method has therefore
been used.

2. Definitions and Methods

The analysis of variance tables shown in Table 1 are
from Kempthorne and Curnow (1961). For the partial
diallel cross it is assumed that p parents are chosen at
random from the population under study and that there
are s crosses per parent. For NC2 there are m male
parents and f female parents crossed in all possible
combinations, and for NC1 there are m male parents
each crossed to a different set of f females. It is assumed
that there are » replicates with » individuals per full-sib
family in each case.

In the expectations of mean squares the components
o¢ and o# are the general combining ability (g.c.a.) and
specific combining ability (s. c. a.) variances respectively,
and if the contributing loci are assumed to be non-inter-
acting then the interpretations in terms of additive
genetic variance (¢%) and dominance variance (gj) are

ot =1/4 (1 + F) %,
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Table 1. Awnalysis of variance tables fov the pavtial diallel
cross, North Carolina Expeviment 1 and North Carolina
Expeviment 2 (df = degrees of freedom)

Expected mean square

Source  df

a) partial diallel cross

g.ca. p—1 o +naptnrol+ ?—?%(E%a 0@
s.c.a.  P(sf2 — 1) o} + nop + nr ol
plots (r—1) 6% + nop
. (ps/2—1)
residual prs(n—1)/2 o}
b)North Carolina Experiment 1
sires m—1 ok +nop+nrok+nr(f+1) o
damsin m(f—1) 6y +nop+ nrot + nrvog
sires
plots (r—1) (mf—1) o% + nop
residual mfr (n—1) oF
¢) North Carolina Experiment 2
sires m—1 ot +nop+nrot+ nrfok
dams  f—1 6y +nop+nrot+nrmof
sires
X dams (m—1)(f—1) oF +nop + nvol
plots ' (r—1)(mf—1) o} + nop
residual  mfr(n—1) %
and

0% =1/4 (1 + F)*op,
where F is the degree of inbreeding of the sample relative
to the population of interest. The variance component
op is due to plot differences and the variance within
families (02) is considered to have genetic and environ-
mental components

viz. of = ofy +1/2(1 — F) o4 +1/4 (3 +F) (1 — F) op.

True genotype X environment interaction is assumed to
be absent.

For NC2 it is necessary to pool the sires and dams mean
squares:

pooled mean square =

m+f— 2 ’
The expected value of the pooled mean square is then
wr(fm—1) +m (/= 1],
m A4 f—2 e

A heritability estimate from a particular analysis is a
function of the observed mean squares and is always of
the form

6% + nop + nrot +

bt — xly,
where ¥ and y are linear functions of components of
variance. For example, we may estimate the heritability
~ 5%
B A .
individual qu + 0.}2) + O'%V (1)
This is the heritability appropriate to a scheme in which
mass selection is carried out within many populations of
size #, such that each population occupies a single plot,
and the progeny of selected parents are distributed at
random among plots.

Let the expected values of ¥ and y, which are both
random variables, be uy and py respectively. Then we
can write

h2 - Yz s ,
iy + ey
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where e, and ¢y are random deviations from wu, and py.
Thus
) ()
Hy Uz Hy

On expanding the final term as a power series, convergent
for ey/uy << 1, we obtain

R (1 + ﬂ) (1
Hy Uy
It follows that

E[,;ﬂ:%:_,,;[wﬂ_@_e_xiajL,,.}

v )
I A

He My  Haly
Elege Elé})
=ﬂ{1———””]+b[f]+...}. (2)
Hy Mz ty Hy

Similarly we can write
var (22) =E [(ﬁ2 — E[h2)?)

in the form
(,_@)2 {E[ei] 2 Eleaey] | Eley] | 4 Eles £3]
My i Uty “y Hz Py
2 Efe3 eyl
— __glL 4 } . (3)
My Uy

Now consider a sample from a normally distributed
population, giving rise to a mean square s with expec-
tation ¢? and degrees of freedom m. In successive
samples s2 is distributed as o? y2,/m and we can therefore
determine the moments of the distribution of s% from the
moments of the chi-square distribution. The expectations
in (2) and (3) may therefore be expressed in terms of the
population variances and design parameters, since both »
and y are linear functions of mean squares.

The question arises as to how many terms should be
included in (2) and (3) in order to give reliable results.
The simulation method described by Pederson (loc. cit.)
was therefore used to determine the distribution of

hindiviaual, as determined from a Method 4 diallel analysis
(Griffing 1956), for the five populations given in Table 2.
The dominance variance and degree of inbreeding were
assumed to be zero and the number of individuals per
cross was set at two, with two replicates in the experi-
mental design. The mean and variance of the heritability
estimates from this simulation procedure were compared
with the values given by expressions (2) and (3).

There were problems with convergence of both (2) and
(3) when fewer than 10 parents were included in the
sample, but satisfactory results for 10 or more parents
were obtained by including only the variance and co-
variance terms.

~ 2 E' 2
ie. E[f = 2 {1 _ Fleaeyl | ,,,Liyl}, @)
Hy Hz fhy iy
and
~ 2 (Ele D re2
var (h?) = ('“l) {ﬂiﬂ _ %%f?’l iéﬂl . (5)
My M Mz [y My J

Table 2. Parameters.of five populations for
which an approximale and an exact simulation
method weve compared

Popu-

lation o UI?V h?ndividual
1 1 9 0.1
2 3 7 0.3
3 1 1 0.5
4 7 3 0.7
5 9 1 0.9
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Table 3. True values (upper figures) from a simulation

procedure and approximate values (lower figures) from ex-

pressions given in the text fov the expectation (E) and

vaviance (V) of individual hevitability estimates from a

diallel cvoss. (Values ave X 10%.) The population parame-
ters ave specified in Table 2

Number of parents

Popu- Para- R e
lation meter 5 6 7 8 0 10
1 E 798 926 937 966 976 978
793 918 957 973 982 986
V 2078 700 533 203 142 107
1215 556 318 206 146 109
2 E 2576 2779 2855 2868 2893 2904
2610 2775 2842 2877 2898 2913
Vv 4537 1499 575 425 333 273
1674 941 629 463 362 295
3 E 4414 4561 4695 4720 4764 4788
4336 4553 4657 4718 4760 4790
14 2047 1691 819 641 525 446
2059 1292 929 720 585 491
4 E 6157 6370 6506 6549 6614 6653
6027 6296 6441 6533 6597 6645
V 2198 1366 1009 811 679 585
2270 1521 1138 906 751 641
5 E 7830 8155 8317 8380 8465 8519
7738 8052 8233 8353 8439 3504
v 5364 1471 1211 912 771 669
2256 1576 1209 979

822 707

The latter expression is commonly given, for example by
Kempthorne (1957). From Table 3, which shows the
“true” values from the simulation procedure and the
values obtained from (4) and (5), it is seen that the
reliability of each expression improves as the sample size
increases.

Expressions (4) and (5) were applied to a range of
situations for the three designs under study. In fact
the variance of an estimated heritability is not a good
indicator of the worth of a design since the variance
would be expected to decrease as the sample size in-
creases. The amount of information per individual,
defined as

i = 1/(N var (2)),

was therefore calculated in each case, N being the total
number of individuals scored. The efficiency of a design
is directly related to the value of 4.

The most efficient method of estimating individual
heritability was first considered. In practice there are
numerous systems of selection and to give the present
results some degree of generality the additional system
has therefore been considered in which there are » groups
of unreplicated full-sib families, corresponding to the #
replicates of the design used for parameter estimation,
and selection on the basis of full-sib performance is
carried out independently within each group. The herit-
ability applicable to this form of selection is (Falconer
1960)

1/2 0%
op/n + op + cov (FS)’
where cov (FS) is the covariance of full-sibs.

(6)

2
Rfamity =
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An estimate of h,?amﬂy is most conveniently obtained

from an analysis of family means, in which case the
expectations of mean squares given in Table 1 are divided
through by »# and the residual mean square is not ob-
tained. There is the assumption that # is the same in the
estimation and selection phases. For an analysis based
on family means there are complications in applying the
estimated variance components to the selection phase
unless the degree of inbreeding is zero throughout. Only
this case was therefore considered for A3, ...

Further, since family means may often be obtained by
treating the family as a unit, the amount of labour in-
volved is effectively independent of ». The parameter 7
was therefore calculated as

1= 1/(1\] var (h?amil'y)) ’

where N is the total number of family-units scored, and »
was treated as a fixed quantity rather than as a variable
for which some optimum value is to be determined.

3. Results and Discussion

a) Individual Heritability

Values of ¢ were initially determined for the four
populations with parameters as shown in Table 4.

Table 4. Parameters of four populations for which the four
mating systems weve compared

Popu- 3 ° . 2

lation %24 U})) afV h?ndividual dd
1 1 0 4 0.2 0
2 2 1 7 0.2 1

3 3 0 2 0.6 0
4 6 1 0.6 1

The parameter “dd’’ is the degree of dominance, de-
fined as (2 o%/0%)!? (Comstock and Robinson, 1948).
Both the number of replicates and the number of
individuals per cross were set at two since these
values were found to maximise ¢ for A}, i €Stima-
ted from a complete diallel cross (Pederson loc. cit.).
For inbreeding levels (F) of 0 and 1 the maximum
values of 7 for various numbers of parents in the
partial diallel and for various numbers of sires in
designs NC 1 and NC 2 are given in Table 5.

Completely inbred parents are seen to give two or
three times as much information per individual as
non-inbred parents, and this factor is most evident
for the higher heritability in the absence of domi-
nance. However, a more significant result is that ¢
passes through no maximum value as the number of
parents or sires isiincreased but tends towards a limi-
ting value for each population and level of inbreeding.
Tor each design there is no apparent optimum number
of parents or sires for the estimation of individual
heritability. This result is in contrast to the situation
for the complete diallel cross, for which 4 was always
found to pass through a maximum value as the num-
ber of parents sampled was increased (Pederson loc.
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Table 5. Estimation of individual heritability; maximum
values of amount of information per individual (X 103) for
varying numbers of a) pavents in a pavtial diallel design
b) sives in design NC1 and c) sives in design NC2. Two
veplicates and two individuals peyr cvoss arve grvown; the
population parameters are specified in Table 4

Number of parents or sires

Popu- . A - _ -
lation 10 30 50 70 90 100
a) partial diallel
1 0 287 327 335 339 340 341
1 676 754 770 776 779 782
2 0 267 305 313 316 318 319
1 528 596 609 615 618 620
3 0 131 145 147 149 149 150
1 700 750 760 764 766 767
4 0 100 125 128 129 129 130
1 350 380 386 389 390 391
b) design NC1
1 0 130 139 141 141 142 142
1 247 263 266 267 268 268
2 0 122 131 132 133 133 134
1 202 216 218 220 220 220
3 0 40 42 43 43 43 43
1 82 86 87 88 88 88
4 0 35 37 38 38 38 38
1 55 58 58 59 59 59
c) design NC2
1 0 307 309 309 309 309 309
1 660 685 687 688 688 639
2 0 289 201 201 291 292 202
1 543 549 549 349 549 550
3 0 130 133 134 134 134 135
1 643 654 656 657 657 658
4 0 113 114 114 114 114 114
1 349 356 357 357 357 357

cit.). For the populations specified in Table 4 these
maximum values were:

Population F maximum 3
1 0 283
1 .606
2 0 267
1 496
3 0 117
1 .568
4 0 100
1 319

If the values in the last column of Table 5 are taken
as the limits it is concluded that a partial diallel
design potentially gives the greatest amount of in-
formation per individual, followed in decreasing
order by design NC 2, the complete diallel, and design
NC 1. The differences between the first three are not
marked if relatively few parents are sampled.

The number of parents to be sampled for a partial
diallel cross or the number of sires for designs NC 1
and NC 2 is therefore largely a matter of individual
choice, although large numbers are preferred. But
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once this number has been nominated there will be
an optimum number of crosses per parent in the case
of the partial diallel and an optimum number of
dams per sire in the case of designs NC 1 and NC 2.
Table 6 shows these optimum numbers for a range of
situations.

The dominant factor is the heritability, with fewer
crosses per parent or dams per sire being required
when the heritability is high. The optimum number
tends to decrease as the level of inbreeding of the
parents is increased from 0 to 1 but there is very little
dependence on the number of parents or sires, or on
the degree of dominance of the character.

There is the further point that a design which maxi-
mises ¢ will not be particularly useful if the estimator
of heritability so obtained is biassed. The expression
(4) was therefore used to determine the expectation

of }AL?W-,,MW, for each of the designs specified in Table 6.

Table 6. Estimation of individual hevitability; optimum
numbers of a) crosses per parvent for a partial diallel design,
and b) and c) dams per sive for designs NCi and NCz2
(* = greater than 100)

Number of 7

Heritability

parents e S —
or sires a dd 0.1 0.3 0.5 0.7 0.9
a) partial diallel
10 0 0 13 5 5 3 3
1 13 7 5 - —
1 0 7 3 3 3 3
1 9 5 5 - —
50 0 0 13 5 5 3 3
1 13 5 5 - -
1 0 7 3 3 3 3
1 7 5 5 — -
b} design NC1
5 0 0 12 5 4 3 3
1 12 5 4 — _
1 0 7 3 3 3 3
1 7 4 4 e
10 0 0 12 5 4 3 3
1 12 5 4 — _
1 0 7 4 3 3 3
1 7 4 4 - —
50 0 0 12 5 4 3 3
1 12 6 4 — —
1 0 7 4 3 3 3
1 8 4 4 — —
c) design NC2
5 0 0 * 8 4 3 2
1 * 11 5 — —
1 0 38 3 2 2 2
1 * 5 4 — _
10 0 0 21 4 3 2 2
1 23 5 3 - —
1 0 7 3 2 2 2
1 8 4 3 - -
50 0 0 8 4 3 2 2
1 8 4 3 — —
1 0 5 2 2 2 2
1 5 3 3 - —

|
|
|
|
|
|
|
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The results (Table 7) indicate that the general nega-
tive bias is greater when the heritability is high than
when it is low, but that none of the designs gives a
consistently smaller bias than the others. It would
appear that five sires are too few for designs NC 1
and NC 2, and that even ten may be too few if a pos-
sible negative bias of about five per cent is unaccep-
table.

Table 7. Estimation of individual heritability; expected
values of the heritability estimate ( X 10°) for designs which
optimise 1 (as shown in Table 4)

Number of Heritability (X 10%)
parents —— e
or sires F dd 100 300 500 700 900
a) partial diallel
10 0 0 99 201 478 662 849
1 99 200 473 — -
1 ¢} 98 285 472 667 382
1 97 279 464 — -
50 0 [¢] 100 299 497" 694 892
1 100 298 496 — —
1 0 100 298 495 694 897
1 100 297 493 — —
b) design NC 1
5 0 0 98 284 457 613 769
1 98 282 450 — —
1 0 97 267 423 575 735
1 96 262 415 — —
10 0 0 99 204 483 664 845
1 99 293 480 — —
1 0 90 288 467 646 829
1 08 284 464 — —
50 0 0 100 299 497 694 800
1 100 299 497 — -
1 0 100 298 494 690 887
1 100 297 494 — —
¢} design NC 2
5 0 0 * 293 472 643 799
1 * 201 471 —~— —
1 0 100 277 445 639 867
1 * 278 450 - —
10 0 0 100 293. 482 663 851
1 100 293 478 — —
1 0] 99 288 473 670 884
1 99 286 467 — —
50 0 0 100 299 496 693 891
1 100 298 495 - —
1 0 100 297 495 604 897
1 1C0O 296 493 — —

Finally, it will be remembered that in each of the
designs specified in Table 6 there are two individuals
per family, this being the number which will always
maximise 7. But a family size of two may be imprac-
tical, particularly for plant material for which border
plants are grown but ignored in analyses. Table 8 has
therefore been prepared, showing the effect of an
increase In family size on the optimum number of
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Table 8. Estimation of individual heyitability; effect of

increasing the number of individuals pey cross on the opti-

mum number of a) crosses pey parent fov a paviial diallel

design, and b), ¢) dams per sive for designs NC 1 and NC 2
(* = greater than 100)

Heritability

0.2 0.6
Number n n

of parents [ . e
orsires F dd 2 5 20 2 5 20

a) partial diallel
10 0 0 7 5 3 3 3 3
1 7 5 3 5 3 3
1 0 S 3 3 3 3 3
1 5 5 3 5 5 5
- 50 0 0 7 5 3 3 3 3
1 7 5 3 5 3 3
1 0 5 3 3 3 3 3
1 5 5 3 5 5 5

b) design NC 1
5 0 0 7 4 3 3 3 2
1 7 4 3 4 3 3
1 0 4 3 2 3 3 2
1 5 4 3 4 4 4
10 0 0 7 4 3 4 3 2
1 7 4 3 4 3 3
1 0 4 3 2 3 3 2
1 5 4 3 4 4 4
50 0 0 7 4 3 4 3 2
1 7 4 3 4 3 3
1 0 4 3 2 3 3 3
1 5 4 3 4 4 4

¢) design NC 2
5 0 0 38 4 2 3 2 2
1 * 5 3 4 3 2
1 0 5 2 2 2 2 2
1 9 4 3 5 4 3
10 0 0 7 3 2 3 2 2
1 7 4 2 3 2 2
1 0 3 2 2 2 2 2
1 4 3 3 3 3 3
50 0 0 5 3 2 2 2 2
1 5 3 p 3 2 2
1 0 3 2 2 2 2 2
1 4 3 2 3 2 2

crosses per parent for the partial diallel, or dams per
sire for designs NC 1 and NC 2. The general trend
is for fewer crosses or dams to be required as more
individuals are grown per family, and there is an
accompanying decrease in the extent to which the
optimum number is a function of heritability.

b) Famaly Heritability
Values of ¢ were calculated for the same parameter
values as were used to obtain Table 5, except that F
was set at zero and # was set at both 2 and 20. From
the results (Table 9) it is seen that 7 increases as the
number of parents or sires is increased and there is
again no tendency for a maximum value to be attained
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along a row. The corresponding maximum values of
7 for the complete diallel are:

Population n Maximum #
1 2 814
20 1.232
2 2 .794
20 .706
3 2 641
20 8.218
4 2 -559
20 1.180

A comparison with the final column of Table 9 in-
dicates that the partial diallel design gives the most
efficient estimator of A7,y followed by NC 2, the
complete diallel, and NC 1.

It is concluded that there is no optimum number of
parents or sires, although the chosen number should
not be less than about 10, but once the choice has
been made then there will be an optimum number of
crosses per parent or dams per sire. Typical values
are shown in Table 10 and these may be compared
with the values for the estimation of 42,4yiaua Which
have been given in Table 8.

Table 9. Estimation of full sib family hevitability ; maximum
values of amount of information pey full-sib family (X 10%)
for vavying numbers of a) parents in a pavtial diallel design,
and b), c) sives in designs NC 1t and NC 2. There ave
2 replicates, with either 2 or 20 individuals per cross; the
population parameters ave specified in Table ¢

Number of parents or sires

Population T T T T T T T T T T T
»n 10 30 50 70 90 110
a) partial diallel
1 2 813 926 948 957 962 966
20 1404 1509 1529 1538 1543 1545
2 2 788 894 914 923 928 931
20 779 846 859 864 867 869
3 2 716 785 798 804 807 809
20 9614 10161 10266 10311 10336 10352
4 2 618 681 694 699 702 704
20 1280 1370 1388 1395 1399 1402
b) design NC 1
1 2 338 361 365 367 368 369
20 126 133 134 135 135 135
2 2 331 353 357 359 360 361
20 119 126 127 128 128 129
3 2 158 167 169 170 171 171
20 117 123 124 125 125 125
4 2 149 158 160 161 161 162
20 104 110 111 111 111 112
c) design NC 2
1 2 878 884 886 886 887 887
20 1380 1437 1446 1450 1452 1453
2 2 854 859 862 863 863 864
20 778 784 785 785 785 785
3 2 713 720 720 720 720 720
20 9256 9459 9497 9513 9522 9528
4 2 613 628 630 631 632 632
20 1283 1288

1288 1293 1296 1298
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Table 10. Estimation of full-sib family hevitability; opti-

mum numbey of a) crosses per pavent for a parvtial diallel

design, and b), c) dams per sive for designs NC 1 and NC 2
(* = greater than 100)

individual
Number of T
parents 0.2 0.6
or sires oo n - B
ad 2 5 20 2 5 20
a) partial diallel
10 0 7 5 3 5 3 3
1 9 5 5 5 5 5
50 0 7 5 3 5 3 3
1 9 5 5 5 5 5
b) design NC 1
5 0 7 4 3 4 4 3
1 7 5 4 4 4 3
10 0 7 4 3 4 3 3
1 7 5 4 4 4 3
50 0 7 4 3 4 3 3
1 7 5 4 4 4 4
c) design NC 2
5 0 * 6 3 4 3 2
1 * 8 4 5 4 4
10 0 7 4 2 3 2 2
1 8 4 3 3 3 3
50 0 5 3 2 3 2 2
1 5 3 3 3 3 2

There is a definite similarity of pattern, and the
slight tendency for the values of Table 10 to be great-
er is not important since the efficiency of estimation
of both heritabilities is affected very little by small
deviations from the optimum with respect to the
number of crosses per parent or dams per sire.

The conclusions regarding estimation of A3,uiviua
from a complete diallel cross have been found to be
very little affected by a non-zero value of ¢% (Peder-
son loc. cit.), which is probably to be expected since
Rinaiviauat 18 defined to be independent of ob. How-
ever, the latter is not the case for A4f,,,. Smith (1938)
has shown that a relationship of the form

oy o o

w + op = ;}g ’
where the coefficient b is usually between 0.2 and 0.8,
has general validity for genetically uniform plant
material and this expression may therefore be used to
determine realistic values for ¢%. If bis set at 0.5 and
% at 2 then o% = 0.83 for population 1 of Table 4,
while for n = 20 the value is 6% = 0.69. The proce-
dure which gave rise to Table 9 was therefore repeat-
ed but with ¢% =1, and also with ¢ = 4 as an
extreme value. Only population 1 was considered
and the number of replicates was varied between
two and five.

The results of this further study will only be stated
qualitatively since previous conclusions are very little
affected. First, it was found in all cases that an in-
crease in the number of replicates beyond two resulted
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in a loss of the efficiency of estimation of Ajmu,. i When all of these factors are taken into account it

Secondly, the partial diallel cross was always the
most preferred method of estimation, followed by
design NC2, the complete diallel, and design NC1.
Finally, for efficient estimation of 4}, from a par-
tial diallel cross the required number of crosses per
parent was found to increase with ¢%, and a similar
result was obtained for designs NC1 and NC2. For
example, from Table 10 the average optimum number
of crosses per parent or dams per sire is approxi-
mately three when 7% iima = 0.2, # = 20, and
0p = 0, and this number increases to approximately
six when o = 1 and twelve when ¢% = 4.

IV. Conclusions

The choice of an experimental design for the esti-
mation of heritability may be based on several
factors, and in this paper the emphasis has been on
the amount of information per unit of measurement
as a discriminatory measure. The partial diallel
design was found to be the most preferred, followed
in decreasing order of preference by design NC2, the
complete diallel, and design NC1. This was the case
for each of the two heritabilities considered and is
probably a general result when a heritability is the
parameter under consideration.

The first three designs are closely related in that
each male parent is crossed to more than one female
and each female is crossed to more than one male.
However, for design NC1 each male is crossed to a
different set of females and this results in an estimate
of additive genetic variance with approximately
twice the sampling variance of the corresponding
estimate from the other three designs. In addition,
the estimation of dominance variance using design
NC1 is a relatively inefficient procedure since a
subtraction of the estimated additive genetic va-
riance is involved.

There may be other factors involved in the choice
of a mating design. As regards practicability, with
animal material there is very little choice but to use
a design such as NC1 since the partial diallel, design
NC2, and the complete diallel are only suitable for
multi-flowered plants. Kearsey (1965) has stated
that if epistatic effects are present then an inflated
estimate of dominance variance will result from
designs NC1 and NC2, while a test for the presence
of non-allelic effects is possible for the data from
a complete diallel. He further considers that the
partial diallel is no more informative than NC1 or
NC2 and involves both an awkward crossing pro-
gramme and a lengthy analysis.
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appears that the complete diallel is the best of the
four designs considered for the estimation of herit-
ability. The “multiple diallel” outlined by Pederson
(1671) is probably the most efficient procedure.

On the question of the number of families to be
grown, the indication are that with a family size (u)
of two or three there should be approximately six
crosses per parent for the partial diallel, or six
females per male for designs NC1 and NC2. The
optimum number is generally fewer than six when
the value of Afuiaua is 0.5 or greater, but is only
slightly changed by variation in either the degree
of dominance or the level of inbreeding of the parents.
If the family size is increased to twenty then the
optimum number of crosses per parent or dams per
sire decreases to about three, although in the case
of Afumiry this number would be greater than three
if the between plot component of variance were
appreciably greater than zero. It follows that any
expansion of a partial diallel design should be in the
direction of using more parents while maintaining
the number of crosses per parent constant, and any
expansion of designs NC1 and NC2 should involve
the use of more male parents. For the heritability
parameters considered in the present paper the num-
ber of replicates should be maintained at two.
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